
Terminator Detection by Support Vector Machine
Utilizing a Stochastic Context-Free Grammar

Patricia Francis-Lyon, Nello Cristianini: University of California at Davis
Stephen Holbrook: Lawrence Berkeley National Laboratory

Abstract

A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector
includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find
terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was
designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for
terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to
incorporate energy affects of base pairing. The parameters from this inferred structure are passed to the SVM classifier, which
distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with
negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix,
stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found
to be 96.4% successful during testing.

Introduction

Two types of transcription terminators, named for their
operating mechanisms, have been found to exist in bacteria:
rho-dependent and rho-independent terminators. Detection of
terminators has been challenging due to the lack of clear
signals in their genetic sequence, such as is provided to
protein gene detection by start and stop codons. However,
there are structural features present in the class of rho-
independent terminators that may be exploited to aid in their
detection.

For a rho-independent terminator, the ability to function
effectively is largely due to formation of a stem-loop. This
secondary structure, rather than sequence, is the phenotype
selected for in the evolutionary process. The same structures
may result from different sequences of nucleotides adenine,
cytosine guanine and uracil (a,c,g and u). Therefore sequences
may be evolutionarily related while not conserved, as long as
their structures are conserved by compensatory mutations.
(For example, a stem cg pair can be replaced by gc, au, ua gu
or ug pair.) Unsurprisingly, it has been found that rho-
independent terminators do not share general consensus
sequence [1]. Our approach to terminator detection is to infer
structural information from sequence alone, then use both
sequence and inferred structural parameters to classify the
sequence as terminator or non-terminator.

Background
Terminator Detection

Transcription is the process by which a copy of the coding
(nontemplate) strand of a gene is produced, except that
thymine (t) in DNA is replaced by uracil (u) in RNA, resulting
in an RNA transcript. The final phase of transcription is
termination, which can be signaled in rho-independent
terminators by the formation of a stem-loop within the RNA
polymerase (RNAP), inducing the pausing of the transcription
elongation complex (TEC) just as the RNAP encounters weak
au bonds at the terminator tail, causing the dissociation of the
TEC from the RNAP and the release the protein or RNA gene.

A model attributed to Carafa et al [2] describes DNA sequence
for rho-independent terminators. An RNA hairpin (stem-loop)
is followed by a 15 nucleotide (nt) long region rich in
thymidine (the nucleoside of thymine) which may be
separated by a spacer region of up to 2 nts. An adenoside-rich
region was described upstream of the hairpin (but not used in
their scoring system). Fig. 0 depicts the canonical terminator,
based upon the Carafa model, that was used in this project.
Carafa et al developed a 2-stage process to detect and classify
candidate terminators which takes into account structural
information such as free energy of the RNA hairpin, along
with stem and loop length. Sequence information such as the
number and positions of thymidine residues, and the fraction
of cg pairs in the stem is also used. This algorithm

successfully distinguishes between terminators and both
random sequence and protein coding sequence.

Other researchers have built upon the Carafa model to create
terminator detectors. The 2-stage process of Ermolaeva et al
[3] utilized location and orientation information, their own
representation of the stability of stem-loop structure, and the
Carafa tail-scoring function. Lesnik et al [4] devised an
algorithm utilizing sequence parameters and allowing the user
to define constraints upon structure. Their thermodynamic
scoring system accounts for the preference of stem-loop
structure over bonding to DNA at the point of transcription
termination. More recently, de Hoon et al [5] used a logistic
regression model to arrive at a decision rule for predicting rho-
independent terminators in B. subtilis and related species.
While these methods detect more known terminators than
Carafa et al, they report a tradeoff between finding more
known terminators (true positives) and getting more false
positives. Also, this sensitivity/specificity tradeoff is hard to
quantify since many terminators have yet to be experimentally
determined so numbers of true and false positives in these
studies are estimates. Some studies count the terminators
found by their algorithm as true positives along with
experimentally determined terminators as long as these
putative terminators satisfy location and scoring standards.
Ermolaeva et al, who create a polynomial approximation to
estimate frequency of false positives, report finding 567
terminators in E. coli with specificity of 98%. This specificity
indicates that the authors regard 555 of the terminators found
by their algorithm as true terminators, which is far higher than
the number of experimentally determined terminators. At this
specificity they reportedly find 89% of all true terminators
(sensitivity).

The success of Hidden Markov models in statistical modeling,
database searching and multiple alignment of both promoters
and protein genes has prompted researchers to look to
grammars to incorporate long range interactions into feature
detection. Hidden Markov models are equivalent to stochastic
regular grammars, where sequence is generated from left to
right [6]. Features that have stem-loop structures caused by
base pairs that are nested can be generated by a context-free
grammar, emitting sequence from outside to inside rather than
from left to right. Stochastic context-free grammars (SCFGs)
capture both sequence and structural information and have
been used successfully to model RNA genes by Eddy and
Durbin [7] and tRNA genes by Sakakibara et al [8]. SCFGs
were used to model terminators by Bockhorst and Craven [9],
as a test case to show that a deficient SCFG could be refined
in an iterative process. Their paper states that preliminary
results indicate that the refinement method produced an SCFG
that improved the accuracy of the model, but the success rates
themselves were not reported.

For this project, a Stochastic Context Free Grammar (SCFG)
was developed to utilize both sequence and structural
information to detect terminators from genomic sequence. To

refine the detection process, a support vector machine (SVM)
was coupled with the SCFG. The SCFG selects likely
candidates for terminators from sequence, and designates
subsequences of each as prefix, stem, loop and suffix. This
information is passed to the SVM, which was trained to
distinguish between terminators and those non-terminators
that were assigned high scores by the SCFG. The terminator
grammar of Bockhorst and Craven was not used, because the
grammar was reported to be deficient and also involves a
trifurcation that is computationally intensive. Rather, a
grammar was developed to select sequence that can take on
the structure of the Carafa canonical rho-indedpendent
terminator.

Stochastic Context-Free Grammars

A Grammar is a set of rules, called productions, together with
a set of abstract symbols called non-terminals and a set of
emitted symbols called terminals. Together these 3 sets
characterize the set of legal strings, the language of the
grammar, which are those strings that can be derived by
iterative application of the productions. Grammars having a
set of terminals consisting of {a,c,g,t} have been used for
modeling strings of nucleotides, such as genes.

The structure of a stochastic context-free grammar is that of its
underlying context-free grammar G. G can be formally
defined as G={N,T,P,S} where N is a finite set of nonterminal
symbols (“states”), T is a finite set of terminal symbols
({a,c,g,t} for nucleotides), P is a finite set of productions of
the form A→ Γ, where A € N , Γ € (NU T)*, and S is the start
nonterminal (S € N). This means that the right hand side of a
production may consist of any combination of terminals and
nonterminals, while the left hand side must be a single
nonterminal. A particular iterative application of productions
that result in a string x is referred to as a derivation or may be
viewed as a parse tree, Π, for x.

An SCFG assigns a probability to each production rule in P
such that all the productions from any given nonterminal sum
to 1. The set of these probabilities is referred to as the
parameters of the model, θ. A sequence x may have a higher
probability (score) with one model than with another. The
probability P(x,Π | G,θ) is the probability that a particular
derivation (parse tree) Π generates string x given structure G
of the underlying context-free grammar and the probabilities θ
associated with the productions. This is simply the product of
all the production rules used in the parse tree Π for sequence
x. An SCFG describes a joint probability distribution P(x,Π |
G,θ) over all sequences x and all possible parse trees Π.

SCFGs are generalizations of hidden Markov models
(HMMs), which are equivalent to stochastic regular grammars.
In addition to primary sequence, modeled in left to right string
generation by HMMS, SCFGs model secondary structure in
outside to inside generation of strings. The HMM algorithms
for solving problems of detection, alignment and parameter

estimation have analogs for families modeled by SCFGs.
These dynamic programming algorithms start with
subsequences of length zero and consider larger and larger
sequences by incrementally extending them. In the case of
HMMs, subsequences are extended leftwards by 1 nt at a time,
whereas for SCFG models, subsequences are extended
outwards by 2 nt at a time, capturing pair interactions.

For this project, genomic sequence needs to be parameterized
into likely terminator structure so the SVM could be trained to
detect which are terminators. To accomplish this the Cocke-
Younger-Kasaami (CYK) algorithm is used for alignment to
the structure and model. Rather than taking the sum of
probabilities of parse trees as is done in scoring, these
alignment algorithms find the argmax of the probabilities for
parse trees. The end result is log P(x,Π* | G,θ) where Π* is the
most likely parse for x given the grammar structure and
model. A traceback can be coded to reveal Π*.

Support Vector Machines

Support Vector Machines (SVMs) are a relatively recent
addition to the field of machine learning. They were
introduced by Vapnik and began to be widely used in
classification in the 1990’s. SVMs are trained with a learning
algorithm from optimization theory that implements a learning
bias derived from statistical learning theory to search a
hypothesis space of linear functions operating on data that has
been pushed into a high dimensional feature space [10].
Basically, an SVM is a hyperplane classifier which finds the
optimal hyperplane to separate data into classes. When
dividing two classes, the optimal hyperplane is orthogonal to
the shortest line connecting the convex hulls of the two
classes, and intersecting it halfway between the two classes at
a perpendicular distance d from either class, creating a margin
of 2d between the classes. The support vectors are those
elements of the training set that lie on the margins of either
class (at a distance d from the separating hyperplane). It is
these training examples that are relevant to the algorithm. It is
these training examples, rather than the centers of clusters, that
are critical for finding the margins between the classes.
Complexity of the algorithm may be reduced by removing the
other training examples from the kernel expansion. It can be
shown by geometry that the margin we want to maximize
equals 2/||w||2, so the unique optimal hyperplane is found by
solving the optimization problem:

 Minimize T(w) = ½ ||w||2 (1)

 Subject to yi . ((w . xi) + b) >= 1,
 i= 1,2,…,m

where ||w||2 is the norm of the separating hyperplane and xi is
the n dimensional vector representing the ith data point of m
data points. The minimization of this optimization problem is
solved using Lagrange multipliers and minimizing the
Lagrangian.

SVMs have the ability to find a separating hyperplane even if
one does not exist in the space of the input vector, as long as
the training data may be mapped into a higher dimensional
feature space in which such a separating hyperplane exists.
The kernel function is used to compute the separating
hyperplane without actually having to carry out the mapping
into higher dimensional space.

To allow for noise in the data that would preclude perfect
classification, a slack variable can be introduced in order to
relax the constraints to :

 Subject to yi . ((w . xi) + b) >= 1 - ei, (2)
 i= 1,2,…,m

 Where slack variables ei >= 0,
 i= 1,2,…,m

The amount of slack is specified by the user of an SVM in the
variable C, which gives the upper bound on the Lagrange
multipliers in the optimization problem. A lower value of C
limits the influence of outliers on the solution.

Choice of kernel determines both the class of functions from
which the solution is taken and the type of regularization that
is used in minimizing the regularized risk, which limits the
complexity of a function class, helping to avoid overfitting.
The common kernels used are Gaussian RBF, polynomial,
sigmoidal, and inverse quadratic [12].

Methods
Terminator Grammar

Because protein genes are generally easy to detect due to the
presence of start and stop codons, this project incorporated the
often-used strategy of searching only those regions between
protein genes to detecting features such as terminators. A
crucial requirement is that the detector be able to distinguish
terminators from RNA genes, which also have stem-loops.

The terminator structure modeled by the grammar is prefix,
followed by stem-loop, followed by suffix (Fig. 2). The
grammar is simple, using software rules to enforce
requirements such as minimum stem length, rather than
complicating the grammar. Also rather than using a
computationally intensive trifurcation from the start state into
3 states of prefix, stem-loop and suffix as Bockhorst and
Craven do, this terminator grammar uses a simpler emissions-
based approach that requires only a bifurcation. Productions
for the terminator grammar are:
 S → L R
 R→ Rb | P
 P → aPa` | L
 L → bL | end
where S is the start state, R is the state for rightwise emission,
P is the state for pairwise emission and L is the state for
leftwise emission.

Fig. 0. Canonical Terminator

Fig 1. State Diagram for Terminator SCFG

A state diagram is represented in Fig. 1, including transition
probabilities. Probability matrices for single emission and
pairwise emission complete the model. A terminator can be
modeled using only leftwise (or rightwise) single-emission.
However, the outside to inside generation of stem-loop
requires an end state from the loop, as well as from either the
prefix or suffix. Also, only one transition into the stem-loop is
allowed in a terminator, so a single-emission state separate
from the loop state is required. This necessitates 2 single-
emission states, However, both of them could just as easily
emit either rightwise or leftwise, as with the alternative
grammar of Fig. 2.

For the purposes of illustrating the grammar, an overly simple
“toy” terminator (with only 2 nts for prefix, stem length, loop
and suffix) is used in Fig.3 (derivation) and Fig. 4 (parse tree).
Fig. 5 illustrates the CYK algorithm that was written to scan
large sections of genome for local matches to the grammar.
Although the toy terminator of Fig. 2-5 is only 10 nts (too
short to be an actual terminator) and the match is global to
simplify the illustration, the intergenic stretches of genome
searched may be longer than 5000 nts. For this reason the
matrix structure used by the CYK algorithm of this project is a
variant [6] of the familiar LxL structure, which would require
O(ML2) space and O(ML3) time. Instead, the entire string of
length L is searched for local matches of at most length D =
min{L, max terminator length}. D is therefore capped at 70,
which shortens the space requirements of CYK algorithm to
O(MLD) and time complexity to O(MLD2).

The (LxD) matrix structure is depicted in Fig. 5, one of which

e

he parameters of the grammar model were trained using a

oftware and Datasets

he Support Vector Machine toolbox for Matlab, Version

ig. 2. Alternative Terminator Grammar

is required for each of the M states to make up the full three
dimensional data structure. Each of the MLD cells takes tim
O(1) (proportional to the number of transitions from the state)
to fill, except for state S, which has a bifurcation and so takes
O(D) to fill, resulting in total running time of O(MLD2). The
score resulting from the CYK algorithm coded for this project
gives a different result that than the familiar log P(x,Π* | G,θ),
because a value was added for base pairing (as in the Zuker
algorithm [7]), to account for energy of folding affects.

T
randomly selected subset of the known terminators. Initial
priors for emissions and transitions were established by
statistical analysis of the training subset as folded by a locally
developed rule-based algorithm. This initial model was then
used by the grammar to select a parse (prefix, stem, loop,
suffix structure) for each terminator. Counts were taken of
frequencies of emissions and transitions, the model parameters
were updated based upon these counts. The process was
iterated until structure was stable.

S

T
2.51, was used to construct and train the SVM that classified
the data [12]. Locally developed software produced negative
examples, implemented a modified CYK algorithm, trained
the terminator SCFG and calculated parameters. Datasources
were the complete E coli genome sequence and annotations
compiled at the University of Wisconsin-Madison [13], which
are available on the web. The sequence used was the M54
version of the K-12 MG1655 strain of E. coli. The sequences
used for positive examples were all 109 known terminators
found within -10 to 60 nts from the end of a gene as
documented by Lesnik et al. Negative examples were drawn
from both strands of the genome. This was accomplished by
starting with the entire strand and removing known genes of
either strand as well as a trailing region of 300 nts in order to
minimize the possibility that unknown terminator sequence
would comprise part of the set of negative training examples.
The sequences of the 168 known RNA genes were added to
the intergenic sequences to form the set of sequences from
which negative examples were drawn. Some of the sequences
were very long (up to 5000 nts) and contained many local
matches to the terminator grammar.

F

 S → L X
 L→ bL | P
 P → aPa` | X
 X → bX | end

.91

.09

.1

.9

1

.1
.9

S

L

R

P

€

N - N
N - N
N - N
N - N
N - N
N - N

NNNNNNNNNN NNNNNNNNNN

prefix: 8-10 nts t-rich suffix: 8-15 nts

stem: 4-12 pairs of nucleotides

loop: 2-10 nts N

N
N

N
N

N

N
N N

Fig. 2. Structure of Simplified Terminator Fig. 4. Parse Tree for Derivation of “tcctccagtt”

Fig. 3. Derivation of Simplified Terminator
 S → L R
 → t L R
 → t cL R
 → t c€ R
 → t c R t
 → t c R t t
 → t c P t t
 → t c cPg t t
 → t c c tPa g t t
 → t c c t L a g t t
 → t cct cL a g t t
 → tcct c cL a g t t
 → tcct c c€ a g t t
 = tcctccagtt

Fig. 5. State path taken by global CYK algorithm performed on string “tcctccagtt”

 d: 1 2 3 4 5 6 7 8 9 10
j: 1 t
 2 c L L **
 3 c
 4 t
 5 c
 6 c L P→ L
 7 a P
 8 g R → P
 9 t R
 10 t R ** Score=S

Collapsed view of the 4 arrays of the data structure which together form the 3 dimensional array structure for CYK algorithm
Coordinate system: end position j vs subsequence length d, d = j–i+1 for subsequence(i:j) being considered
Horizontal (green) run is leftwise emission (prefix of length 2 and loop of length 2): shows path through green array (state L)
Knight’s path (red) run is for pairwise emission (stem of length 2): shows path through red array (state P)
Diagonal (blue) run is for rightwise emission (suffix of length 2): shows path through blue array (state R)
Global score considers entire string = subsequence(1:10) where j=10, d=10: shows path through yellow array (state S)

** S → LR at substring(1:10), adding scores from L of substring(1:2) and R of substring(3:10)

loop

 t c

prefix

t – a

c – g

stem

c c

 t t

suffix

S

R

a

R

R

P

P

P

L

L

L

€

L

L

L

€

c

c

c

c

t t

t

t

g

Experiment The test set was comprised of the 28 terminators that not

For each sequence processed by the SCFG, the best local
alignments (o parses) were determined by the CYK
algorithm. Thi i ffect, the selection of prefix, stem-loop
and suffix structures for candidate terminators. A subset of 81
known terminator sequences was randomly selected for
training the p ers of the grammar model, as described in
the Methods section. After training, these sequences were
pr by FG likely parses of prefix, stem-loop
and suffix structures. Each of these sequences contained one
li w as p rized, resulting in a total of 81
po am ich to train the SVM. The

aining 28 positive sequences that had not been used in
aining the SCGF were then processed into 28 positive

 known RNA
ere processed

e examples.

stem-loop and suffix structure inferred by the
example, 17 parameters were

meters represented fractions of a,c, and t
tracted was the probability that the stem
oop of the example would close the loop
tor (as calculated by their frequency
ng sequences as folded by the SCFG).

6 dinucleotide pairs in the stem that
tion (at cg ta tg gc gt) were extracted

eing parameterized. The number of
e stem and the first t following it was

the tail scoring function of Carafa et al
ummed over all the nucleotides of the prefix:

 xn = xn-1 * 0.6 if nth nucleotide is not a t

Additionally there were 4 structural parameters: prefix length,
stem length, loop length and suffix length. The SCFG score of
the alignment was included, resulting in the 17 dimensional
input into the SVM for each example being classified. All
parameters were normalized.

Since there were many more negative than positive examples,
negative intergenic and negative RNA gene examples were
each randomly sampled to select the negative examples for the
training and test sets, allowing 5 times as many negative as
positive (terminator) examples, proportionately representing
featureless intergenic and RNA gene examples. The training
set was therefore comprised of the 81 terminators that had

e influence of outliers.

been
used to train the SCFG, along with 130 featureless intergenic
examples and 10 negative RNA gene examples. An SVM was
train set.
96 , with detection of negative
examples more successful than detection of positives. (table
1). Cross-vali on was also used on the traini , resulting
in 3 SVMs, wh were then tested with the o inal test set.
Results ranged from 97.0.5% to 97.6% correctly identified
(table , with pos e examples being ected al ost as
successfully as negative example (average 95.2%). Average
prediction ac racy du g cross-vali on was 96.1% with
average accu y of RNA genes prediction of 97.0 (table 3).

Discussion

There are 2 major aspects to t de tion ethod: 1) the
selection of likely candidates from e genome and their
parameterization by the SCFG based upon inferring structure
as well as upon sequence composition and) the use of an
SVM to detect terminators from ese high ng candidates
utilizing the extracted features.

The success rates reported in tables 1-3 give a measure of how
well the SVM accomplished the classification that it was
trained to do. It is worthwhile to also evaluate each component
of the 2-stage The SCFG retained local matches that scored
above the cutoff, resulting in all k wn terminators being
selected as likely terminators, along with 1063 more from
among the negative examples. As described in t Background
section, there is a sensitivity/specificity tradeoff: if the SCFG
were to function alone as a detector, the cutoff score would be

es but reduced sensitivity of
 selected by Ermolaeva et al.

Instead, cutoff was selected to allow 100% sensitivity for the
SCFG alone, allowing the SVM to refine the prediction. After
passing these candidates through SVM, the sensitivity of the
2-stage terminator detector was reduced to 92.9%, but the
number of false positives went down to 4 (assuming none of
the negative examples are as-yet-undiscovered terminators).
A Receiver Operating Characteristics (ROC) curve is perhaps
the best way to view the full situation of tradeoff between
sensitivity and specificity. If the area under the ROC curve is
0.9 or above, the classifier is considered good. As shown in
Fig. 6, the SCFG alone has good performance: the area under
ROC = 0.97, but when coupled with the SVM, performance is
better: 0.99.

Because of the structural similarity of RNA genes and

M
f interest. The SCFG

ce
s intergenic sequence.
mponent was better for

NA gene
sequence, indicating room for improvement in the SVM.

ptimal
s is,

ed using the entire training set and tested on the test
.4% were correctly iden e

aramet

ocessed the SC for

kely parse
sitive ex

hich w
ples with wh

aramete

rem
tr
examples with which to test the SVM. All 168
genes and the featureless intergenic sequences w
by the SCFG into negativ

From the prefix,
CYK algorithm for each
extracted. Three para
in the prefix. Also ex
base pair closing the l
of an actual termina
counts in the 81 traini
The frequencies of the
were found to aid detec
from the sequence b
nucleotides between th
used, along with
s

T = Σ xn where xn = xn-1 * 0.9 if nth nucleotide is a t (3)

raised to have fewer false positiv
about 89% as with the tradeoff

been used to train the SCFG, along with negative examples terminators, the successes of both the SCFG and SV
comprised of 376 featureless intergenic examples and 29 components in distinguishing them was o
RNA genes. SVMs with radial basis, polynomial and linear was about as effective in filtering out non-terminator sequen
kernels were constructed and tested. The most successful from RNA genes as from featureles
SVM utilized a linear kernel, with C (the upper bound on the However, performance of the SVM co
Lagrange multipliers, as discussed above) set to 10, limiting terminator candidates drawn from intergenic than R
th

ntified

dati
ich

ng set
rig

2) itiv det m

cu
rac

rin dati
%

his tec
 th

 m

 2
scorith

no

he

Future Work

ifferent approaches might be tried to address the far greater

ion of machine learning methods in the detection
s poses a challenge due to the nature of their

volutionarily conserved phenotype, which is the secondary

toff to allow many terminator
andidates, which were then classified by an SVM.

r

g

The SCFG-SVM terminator algorithm would be more useful if
a detector trained using examples from a well-annotated
species could be used on an evolutionarily related but newly
sequenced species with no known terminators. Future work
would include testing this transferability by using the E. coli
terminator detector on a different, but closely related species
whose terminators are known.

The SCFG component of the detector might work better if the
loop state was separate from the prefix state, allowing for
different emissions parameters. Another way to improve the
SCFG might be to change the grammar structure to allow for
single emission in the middle of the terminator stem, which is
a part of the Lesnik model left out of this grammar in order to
simplify it.

D
numbers of negative examples than positive examples
provided to the SVM. The approach of Meraz et al (2004)*
might improve SVM performance by using successive
iterations of a support vector machine to select improved
current negative sets by selecting for maximum dissimilarity

 Table 1: Test Results of SVM Terminator Classifie
 terminator terminator neg ex neg ex
 correct wrong correct wron

SVM

to the positive set but also maximum distance to the negative
set. The net affect is that the SVM decision boundary shrinks
closer and closer to the positive set. Alternatively, it might
improve results to use different C values for positive and
negative examples such that the C value for positive examples
is higher, weighting them more in the classification process.
Also, the SVM might be better at detecting RNA genes if a
greater proportion of the negative examples were drawn from
RNA genes.

Conclusion

The applicat
of terminator
e
structure that the RNA takes on during transcription. The
challenge is that given only sequence information, something
must be inferred about the structure of the RNA. While a
SCFG performed reasonably well by itself in inferring
structure and detecting terminators, selection was much
improved by raising the score cu
c

s
 RNA genes RNA genes total total
 correct wrong correct wrong

0.9286 0.0714 0.9714 0.0286 0.8000 0.2000 0.9643 0.0357

x
g

 Table 2: Results of test set on Cross validation SVM
 terminator terminator neg ex neg e
 correct wrong correct wron

SVM 1

 Terminator Classifiers
 RNA genes RNA genes total total
 correct wrong correct wrong

0.9286 0.0714 0.9786 0.0214 0.8 0.2 0.9702 0.0298
SVM 2 0.9643 0.0357 0.9786 0.0214 0.8 0.2 0.9762 0.0238
SVM 3 0.9643 0.0357 0.9786 0.0214 0.8 0.2 0.9762 0.0238
AVE 0.9524 0.0476 0.9786 0.0214 0.8 0.2 0.9742 0.0258

 Table 3: Results of Cross validation for SVM Term
 terminator terminator neg ex neg e
 correct wrong correct wron

SVM 1

inator Classifiers
 RNA genes RNA genes total total
 correct wrong correct wrong

x
g

0.9259 0.0741 0.9850 0.0150 1.0000 0.0000 0.9750 0.0250
SVM 2 0.8889 0.1111 0.9774 0.0226 1.0000 0.0000 0.9625 0.0375
SVM 3 0.8889 0.1111 0.9568 0.0432 0.9091 0.0909 0.9458 0.0542
AVE 0.9012 0.0988 0.9731 0.0269 0.9697 0.0303 0.9611 0.0389

 Fig. 6. ROC curves show good detection with SCFG alone, but better with 2-stage detector

[1] Platt, T ip atio gulation of gene
expression. A iochem 2.
[2] Carafa . and T . (19 tion
independent E ia coli T Te A S
Analysis of th -Loop Str Mo 835-

] Ermolaeva, M., Khalak H., White O., Smith H. and Salzberg S. (2000)
ediction of Transcription Terminators in Bacterial Genomes. J. Mol. Bio.
1, 27-33.
] Lesnik E., Sampath R., Levene H., Henderson T., McNeil J. and Ecker,
. (2001) Prediction of rho-independent transcriptional terminators in
scherichia coli. Nucleic Acids Research 29:3583-3594.

sequence ana bilistic pro ucle
Cambridge U ess.
[7] Eddy S. in R. (1994) sis using
covariance m eic Aci h 22 8.

] Sakak Y., Brow , Hug an I der K..,
derwood and Haus . (19 sitc ee grammars for

NA mode Nucleic A 51
] Bock J. and Craven M. (2 ing t re of a
ochastic C t-Free Gr ar. P of th

Conference on Artificial Intelligence (IJCAI 2001).
[10] Cristianini N., and Shawe-Taylor J. (2000) An Introduction to Support
Vector Machines and other kernel-based learning methods. Cambridge
University Press.
[11] Müller, K., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (March,
2001) An Introduction to Kernel–Based Learning Algorithms. IEEE

Networks, vol 12, no. 2.
hine

land,V.,
ley,M -Vid ner,J .K. ew,G.F. (1997)
e com ome sequence of Es oli nce, 277,

–14 ources available on the web at:
p://w e.w quen m

REFERENCES

. (1966) Transcr
nnu. Rev. B

tion termin
. 55, 339-37

n and the re

Y., Brody E hermes, C 90) Predic of Rho-
scherich
eir Stem

ranscription
uctures. J.

rminators:
l. Bio. 216,

tatistical
858.

[3
Pr
30
[4
D
E
[5] de Hoon M.,Makita Y., Nakai K. and Miyano S. (2005) Prediction of Transactions of Neural
Transcriptional Terminators in Bacillus subtilis and Related Species. PLoS [12] Schwaighofer, Anton (January 2002) Support Vector Mac
Comput Biol 1(3): e25.
[6] Durbin, ., Krogh A. and Mitch 998) l

toolbox, Version 2.51. GNU public license.
3] B R., P , Blo rna,R.., Eddy S

lysis: Proba
ison G. (1

teins and n
 Biologica
ic acids. models of

niversity Pr
, and Durb

odels. Nucl
 RNA sequence an

ds Researc
aly

:2079-208

[8
Un

ibara
R.C.

n M.
sler D

hey R., Mi
94) Stocha

.S., Sjolan
context-fr

tR ling. cids Research 22:5112- 20.
[9
St

horst
ontex

001) Refin
roceedings

he Structu
e 17amm th International Joint

[1
Ri

lattner,F.
., Collado

lunkett,G.
es,J., Glas

ch,C.A., Pe
.D., Rode,C

N.T., Bur
 and Mayh

Th plete gen cherichia c K-12. Scie
1453 74. Datas

ww.genomhtt isc.edu/se cing/k12.ht

	Abstract

